On Three Different Notions of Monotone Subsequences
نویسنده
چکیده
We review how the monotone pattern compares to other patterns in terms of enumerative results on pattern avoiding permutations. We consider three natural definitions of pattern avoidance, give an overview of classic and recent formulas, and provide some new results related to limiting distributions.
منابع مشابه
Enumerating Longest Increasing Subsequences and Patience Sorting Enumerating Longest Increasing Subsequences and Patience Sorting
In this paper we present three algorithms that solve three combinatorial optimization problems related to each other. One of them is the patience sorting game, invented as a practical method of sorting real decks of cards. The second problem is computing the longest monotone increasing subsequence of the given sequence of n positive integers in the range 1; : : : ; n. The third problem is to en...
متن کاملThe Minimum Number of Monotone Subsequences
Erdős and Szekeres showed that any permutation of length n ≥ k2 + 1 contains a monotone subsequence of length k + 1. A simple example shows that there need be no more than (n mod k) (dn/ke k+1 ) + (k − (n mod k))(bn/kc k+1 ) such subsequences; we conjecture that this is the minimum number of such subsequences. We prove this for k = 2, with a complete characterisation of the extremal permutation...
متن کاملOn Boolean Lattices and Farey Sequences
We establish monotone bijections between subsequences of the Farey sequences and the halfsequences of Farey subsequences associated with elements of the Boolean lattices.
متن کاملMonotone Subsequences in Any Dimension
We exhibit sequences of n points in d dimensions with no long monotone subsequences, by which we mean when projected in a general direction, our sequence has no monotone subsequences of length n+d or more. Previous work proved that this function of n would lie between n and 2 n; this paper establishes that the coefficient of n is one. This resolves the question of how the Erdo s Szekeres result...
متن کاملEnumerating longest increasing subsequences and patience sorting
In this paper we present three algorithms that solve three combinatorial optimization problems related to each other. One of them is the patience sorting game, invented as a practical method of sorting real decks of cards. The second problem is computing the longest monotone increasing subsequence of the given sequence of n positive integers in the range 1, . . . , n. The third problem is to en...
متن کامل